Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.235
Filter
1.
Cell Rep ; 43(4): 114012, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38573856

ABSTRACT

Plasmodium falciparum is a human-adapted apicomplexan parasite that causes the most dangerous form of malaria. P. falciparum cysteine-rich protective antigen (PfCyRPA) is an invasion complex protein essential for erythrocyte invasion. The precise role of PfCyRPA in this process has not been resolved. Here, we show that PfCyRPA is a lectin targeting glycans terminating with α2-6-linked N-acetylneuraminic acid (Neu5Ac). PfCyRPA has a >50-fold binding preference for human, α2-6-linked Neu5Ac over non-human, α2-6-linked N-glycolylneuraminic acid. PfCyRPA lectin sites were predicted by molecular modeling and validated by mutagenesis studies. Transgenic parasite lines expressing endogenous PfCyRPA with single amino acid exchange mutants indicated that the lectin activity of PfCyRPA has an important role in parasite invasion. Blocking PfCyRPA lectin activity with small molecules or with lectin-site-specific monoclonal antibodies can inhibit blood-stage parasite multiplication. Therefore, targeting PfCyRPA lectin activity with drugs, immunotherapy, or a vaccine-primed immune response is a promising strategy to prevent and treat malaria.


Subject(s)
Erythrocytes , Plasmodium falciparum , Polysaccharides , Protozoan Proteins , Erythrocytes/parasitology , Erythrocytes/metabolism , Humans , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Plasmodium falciparum/metabolism , Polysaccharides/metabolism , Malaria, Falciparum/parasitology , Animals , Lectins/metabolism , Lectins/genetics , Antigens, Protozoan/metabolism , Antigens, Protozoan/immunology , Antigens, Protozoan/genetics , Protein Binding
2.
Nat Commun ; 14(1): 6391, 2023 10 12.
Article in English | MEDLINE | ID: mdl-37828011

ABSTRACT

Placental malaria is caused by Plasmodium falciparum-infected erythrocytes (IEs) adhering to chondroitin sulfate proteoglycans in placenta via VAR2CSA-type PfEMP1. Human pentameric immunoglobulin M (IgM) binds to several types of PfEMP1, including VAR2CSA via its Fc domain. Here, a 3.6 Å cryo-electron microscopy map of the IgM-VAR2CSA complex reveals that two molecules of VAR2CSA bind to the Cµ4 of IgM through their DBL3X and DBL5ε domains. The clockwise and anti-clockwise rotation of the two VAR2CSA molecules on opposite faces of IgM juxtaposes C-termini of both VAR2CSA near the J chain, where IgM creates a wall between both VAR2CSA molecules and hinders its interaction with its receptor. To support this, we show when VAR2CSA is bound to IgM, its staining on IEs as well as binding of IEs to chondroitin sulfate A in vitro is severely compromised.


Subject(s)
Malaria, Falciparum , Plasmodium falciparum , Female , Pregnancy , Humans , Plasmodium falciparum/metabolism , Chondroitin Sulfates/metabolism , Cryoelectron Microscopy , Placenta/metabolism , Antigens, Protozoan/metabolism , Antibodies, Protozoan/metabolism , Erythrocytes/metabolism , Immunoglobulin M/metabolism
3.
Blood ; 142(23): 2016-2028, 2023 12 07.
Article in English | MEDLINE | ID: mdl-37832027

ABSTRACT

The malaria parasite Plasmodium falciparum invades and replicates asexually within human erythrocytes. CD44 expressed on erythrocytes was previously identified as an important host factor for P falciparum infection through a forward genetic screen, but little is known about its regulation or function in these cells, nor how it may be used by the parasite. We found that CD44 can be efficiently deleted from primary human hematopoietic stem cells using CRISPR/Cas9 genome editing, and that the efficiency of ex vivo erythropoiesis to enucleated cultured red blood cells (cRBCs) is not affected by lack of CD44. However, the rate of P falciparum invasion was reduced in CD44-null cRBCs relative to isogenic wild-type control cells, validating CD44 as an important host factor for this parasite. We identified 2 P falciparum invasion ligands as binding partners for CD44, erythrocyte binding antigen 175 (EBA-175) and EBA-140 and demonstrated that their ability to bind to human erythrocytes relies primarily on their canonical receptors, glycophorin A and glycophorin C, respectively. We further show that EBA-175 induces phosphorylation of erythrocyte cytoskeletal proteins in a CD44-dependent manner. Our findings support a model in which P falciparum exploits CD44 as a coreceptor during invasion of human erythrocytes, stimulating CD44-dependent phosphorylation of host cytoskeletal proteins that alter host cell deformability and facilitate parasite entry.


Subject(s)
Erythrocytes , Malaria, Falciparum , Plasmodium falciparum , Humans , Antigens, Protozoan/genetics , Antigens, Protozoan/metabolism , Cytoskeletal Proteins , Erythrocytes/metabolism , Erythrocytes/parasitology , Hyaluronan Receptors/metabolism , Malaria, Falciparum/metabolism , Plasmodium falciparum/metabolism , Protein Binding , Protozoan Proteins/metabolism
4.
ACS Nano ; 17(14): 13500-13509, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37435892

ABSTRACT

Malaria infected erythrocytes utilize the parasite protein VAR2CSA to bind to a unique presentation of chondroitin sulfate (CS) for their placenta specific tropism. Interestingly, many cancers express a similar form of CS, thereby termed oncofetal CS (ofCS). The distinctive tropism of malaria infected erythrocytes and the identification of oncofetal CS, therefore, represent potentially potent tools for cancer targeting. Here we describe an intriguing drug delivery platform that effectively mimics infected erythrocytes and their specificity for ofCS. We used a lipid catcher-tag conjugation system for the functionalization of erythrocyte membrane-coated drug carriers with recombinant VAR2CSA (rVAR2). We show that these malaria mimicking erythrocyte nanoparticles (MMENPs) loaded with docetaxel (DTX) specifically target and kill melanoma cells in vitro. We further demonstrate effective targeting and therapeutic efficacy in a xenografted melanoma model. These data thus provide a proof of concept for the use of a malaria biomimetic for tumor targeted drug delivery. Given the broad presentation of ofCS found across various types of malignancies, this biomimetic may therefore show potential as a broadly targeted cancer therapy against multiple tumor indications.


Subject(s)
Malaria, Falciparum , Malaria , Melanoma , Humans , Antigens, Protozoan/metabolism , Biomimetics , Chondroitin Sulfates/metabolism , Erythrocytes/metabolism , Malaria, Falciparum/metabolism , Plasmodium falciparum
5.
Trends Parasitol ; 39(3): 160-162, 2023 03.
Article in English | MEDLINE | ID: mdl-36682939

ABSTRACT

The Plasmodium falciparum invasion complex - consisting of the prime blood-stage vaccine candidates PfRH5, PfCyRPA and PfRipr - is essential and conserved. New data from Scally et al. reveal that the complex consists of two additional proteins, adding important knowledge to the current understanding of the biology behind the invasion process.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Humans , Plasmodium falciparum , Protozoan Proteins/metabolism , Antigens, Protozoan/metabolism , Carrier Proteins/metabolism , Antibodies, Protozoan , Erythrocytes , Malaria, Falciparum/prevention & control
6.
Chembiochem ; 24(7): e202200533, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36449557

ABSTRACT

Inhibiting the formation of a tight junction between two malaria parasite proteins, apical membrane antigen 1 and rhoptry neck protein 2, crucial for red blood cell invasion, prevents progression of the disease. In this work, we have used a unique approach to design a chimeric peptide, prepared by fusion of the best features of two peptide inhibitors, that has displayed parasite growth inhibition ex vivo with nanomolar IC50 , which is 100 times better than any of its parent peptides. Furthermore, to gain structural insights, we computationally modelled the hybrid peptide on its receptor.


Subject(s)
Plasmodium falciparum , Protozoan Proteins , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Antigens, Protozoan/chemistry , Antigens, Protozoan/metabolism , Membrane Proteins/chemistry , Peptides/chemistry , Erythrocytes/metabolism
7.
Malar J ; 21(1): 371, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36471315

ABSTRACT

BACKGROUND: Malaria rapid diagnostic tests (RDTs) remain the main point-of-care tests for diagnosis of symptomatic Plasmodium falciparum malaria in endemic areas. However, parasites with gene deletions in the most common RDT target, histidine rich protein 2 (pfhrp2/HRP2), can produce false-negative RDT results leading to inadequate case management. The objective of this study was to determine the prevalence of hrp2/3 deletions causing false-negative RDT results in Vietnam (Gia Lai and Dak Lak provinces). METHODS: Individuals presenting with malaria symptoms at health facilities were screened for P. falciparum infection using light microscopy and HRP2-RDT (SD Bioline Malaria Antigen Pf/Pv RDT, Abbott). Microscopically confirmed P. falciparum infections were analysed for parasite species by 18S rRNA qPCR, and pfhrp2 and pfhrp3 exon2 deletions were investigated by nested PCR. pfhrp2 amplicons were sequenced by the Sanger method and HRP2 plasma levels were determined by enzyme-linked immunosorbent assay (ELISA). RESULTS: The prevalence of false-negative RDT results among symptomatic cases was 5.6% (15/270). No pfhrp2 and pfhrp3 deletions were identified. False-negative RDT results were associated with lower parasite density (p = 0.005) and lower HRP2 plasma concentrations (p < 0.001), as compared to positive RDT. CONCLUSIONS: The absence of hrp2/3 deletions detected in this survey suggests that HRP2-based malaria RDTs remain effective for the diagnosis of symptomatic P. falciparum malaria in Central Vietnam.


Subject(s)
Malaria, Falciparum , Plasmodium falciparum , Humans , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Gene Deletion , Vietnam/epidemiology , Diagnostic Tests, Routine/methods , Malaria, Falciparum/diagnosis , Malaria, Falciparum/epidemiology , Malaria, Falciparum/genetics , Antigens, Protozoan/genetics , Antigens, Protozoan/metabolism , Real-Time Polymerase Chain Reaction
8.
Front Immunol ; 13: 900080, 2022.
Article in English | MEDLINE | ID: mdl-36059505

ABSTRACT

Developing a safe and effective malaria vaccine is critical to reducing the spread and resurgence of this deadly disease, especially in children. In recent years, vaccine technology has seen expanded development of subunit protein, peptide, and nucleic acid vaccines. This is due to their inherent safety, the ability to tailor their immune response, simple storage requirements, easier production, and lower expense compared to using attenuated and inactivated organism-based approaches. However, these new vaccine technologies generally have low efficacy. Subunit vaccines, due to their weak immunogenicity, often necessitate advanced delivery vectors and/or the use of adjuvants. A new area of vaccine development involves design of synthetic micro- and nano-particles and adjuvants that can stimulate immune cells directly through their physical and chemical properties. Further, the unique and complex life cycle of the Plasmodium organism, with multiple stages and varying epitopes/antigens presented by the parasite, is another challenge for malaria vaccine development. Targeting multistage antigens simultaneously is therefore critical for an effective malaria vaccine. Here, we rationally design a layer-by-layer (LbL) antigen delivery platform (we called LbL NP) specifically engineered for malaria vaccines. A biocompatible modified chitosan nanoparticle (trimethyl chitosan, TMC) was synthesized and utilized for LbL loading and release of multiple malaria antigens from pre-erythrocytic and erythrocytic stages. LbL NP served as antigen/protein delivery vehicles and were demonstrated to induce the highest Plasmodium falciparum Circumsporozoite Protein (PfCSP) specific T-cell responses in mice studies as compared to multiple controls. From immunogenicity studies, it was concluded that two doses of intramuscular injection with a longer interval (4 weeks) than traditional malaria vaccine candidate dosing would be the vaccination potential for LbL NP vaccine candidates. Furthermore, in PfCSP/Py parasite challenge studies we demonstrated protective efficacy using LbL NP. These LbL NP provided a significant adjuvant effect since they may induce innate immune response that led to a potent adaptive immunity to mediate non-specific anti-malarial effect. Most importantly, the delivery of CSP full-length protein stimulated long-lasting protective immune responses even after the booster immunization 4 weeks later in mice.


Subject(s)
Chitosan , Malaria Vaccines , Nanoparticles , Parasites , Animals , Antigens, Protozoan/metabolism , Chitosan/metabolism , Mice , Plasmodium falciparum
9.
Parasitol Int ; 91: 102648, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35988900

ABSTRACT

Rapid diagnostic tests (RDTs) based on immunochromatographic detection of Plasmodium falciparum histidine-rich protein 2 (HRP2) have been frequently used for malaria diagnosis. The HRP2-based RDTs are highly sensitive and easy to use; however, their sensitivity may be low in detecting P. falciparum strains carrying deletion of the pfhrp2 and pfhrp3 genes encoding HRP2 and HRP3, respectively. The automated hematology analyzer XN-31, developed by Sysmex (Kobe, Japan) to aid in malaria diagnosis, has higher sensitivity than RDTs owing to a unique automated nucleic acid staining technology that has shown great potential in clinical settings. In this study, we compared the performance of the XN-31 analyzer and two RDTs to detect pfhrp2- and/or pfhrp3-deleted parasites cultured in vitro. The analyses showed that the analyzer was not only as sensitive to pfhrp2- and/or pfhrp3-deleted strains as it was to the wild-type strain but also had higher sensitivity than the RDTs. These results suggested that the XN-31 analyzer is useful for rapid and reliable detection of pfhrp2- and/or pfhrp3-deleted parasites in clinical settings.


Subject(s)
Hematology , Malaria, Falciparum , Antigens, Protozoan/genetics , Antigens, Protozoan/metabolism , Histidine/metabolism , Humans , Japan , Malaria, Falciparum/diagnosis , Malaria, Falciparum/parasitology , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism
10.
Methods Mol Biol ; 2470: 257-271, 2022.
Article in English | MEDLINE | ID: mdl-35881351

ABSTRACT

The Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a key virulence factor for this human malaria parasite. During pregnancy, VAR2CSA is the only PfEMP1 variant expressed on the surface of infected erythrocytes that mediates adhesion to placenta cells and causes severe pregnancy outcomes.In this chapter, we present an optimized protocol to extract and immunoprecipitate endogenous VAR2CSA from the infected erythrocyte membrane phospholipid bilayer environment for subsequent characterization of the central role of VAR2CSA in placental malaria.


Subject(s)
Malaria, Falciparum , Malaria , Antibodies, Protozoan , Antigens, Protozoan/metabolism , Erythrocytes/metabolism , Female , Humans , Immunoprecipitation , Malaria, Falciparum/parasitology , Placenta/metabolism , Plasmodium falciparum/metabolism , Pregnancy , Protozoan Proteins
11.
Methods Mol Biol ; 2470: 327-342, 2022.
Article in English | MEDLINE | ID: mdl-35881356

ABSTRACT

Identification of P. falciparum infected erythrocyte surface ligands (such as PfEMP1) matched with the host receptors they interact with, as well as identification of PfEMP1 domains that are targets of protective immunity, are important for understanding of the pathophysiology of severe malaria (SM) and for design of novel vaccine candidates. In addition, identification of small-molecule drugs that can prevent or reverse receptor-ligand domain interactions could provide new tools for adjunctive therapy in SM. This protocol describes how to prepare functionally intact PfEMP1 proteins in mammalian cells (COS-7) and immobilize them on the surface of BioPlex beads. Furthermore, the protocol described how to identify PfEMP1 constructs that bind to specific host receptors or to immunoglobulins (IgG, IgM, etc.), and how to measure inhibition of the receptor binding to PfEMP1 constructs by small-molecule compounds or serum/plasma.


Subject(s)
Malaria, Falciparum , Plasmodium falciparum , Animals , Antibodies, Protozoan , Antigens, Protozoan/metabolism , Erythrocytes/metabolism , Humans , Ligands , Mammals/metabolism , Plasmodium falciparum/metabolism , Polymers , Protozoan Proteins/metabolism
12.
Front Cell Infect Microbiol ; 12: 945924, 2022.
Article in English | MEDLINE | ID: mdl-35899047

ABSTRACT

The 6-cysteine protein family is one of the most abundant surface antigens that are expressed throughout the Plasmodium falciparum life cycle. Many members of the 6-cysteine family have critical roles in parasite development across the life cycle in parasite transmission, evasion of the host immune response and host cell invasion. The common feature of the family is the 6-cysteine domain, also referred to as s48/45 domain, which is conserved across Aconoidasida. This review summarizes the current approaches for recombinant expression for 6-cysteine proteins, monoclonal antibodies against 6-cysteine proteins that block transmission and the growing collection of crystal structures that provide insights into the functional domains of this protein family.


Subject(s)
Malaria, Falciparum , Plasmodium , Animals , Antibodies, Blocking/metabolism , Antibodies, Protozoan , Antigens, Protozoan/genetics , Antigens, Protozoan/metabolism , Cysteine/metabolism , Life Cycle Stages , Plasmodium falciparum/chemistry , Protozoan Proteins
13.
Nat Commun ; 13(1): 3307, 2022 06 08.
Article in English | MEDLINE | ID: mdl-35676275

ABSTRACT

Severe falciparum malaria is a major cause of preventable child mortality in sub-Saharan Africa. Plasma concentrations of P. falciparum Histidine-Rich Protein 2 (PfHRP2) have diagnostic and prognostic value in severe malaria. We investigate the potential use of plasma PfHRP2 and the sequestration index (the ratio of PfHRP2 to parasite density) as quantitative traits for case-only genetic association studies of severe malaria. Data from 2198 Kenyan children diagnosed with severe malaria, genotyped for 14 major candidate genes, show that polymorphisms in four major red cell genes that lead to hemoglobin S, O blood group, α-thalassemia, and the Dantu blood group, are associated with substantially lower admission plasma PfHRP2 concentrations, consistent with protective effects against extensive parasitized erythrocyte sequestration. In contrast the known protective ATP2B4 polymorphism is associated with higher plasma PfHRP2 concentrations, lower parasite densities and a higher sequestration index. We provide testable hypotheses for the mechanism of protection of ATP2B4.


Subject(s)
Blood Group Antigens , Erythrocytes , Malaria, Falciparum , Antigens, Protozoan/genetics , Antigens, Protozoan/metabolism , Biomass , Blood Group Antigens/metabolism , Child , Erythrocytes/parasitology , Humans , Kenya , Plasma Membrane Calcium-Transporting ATPases/genetics , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism
14.
Parasit Vectors ; 15(1): 205, 2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35698238

ABSTRACT

BACKGROUND: Plasmodium vivax reticulocyte binding protein 2b (PvRBP2b) plays a critical role in parasite invasion of reticulocytes by binding the transferrin receptor 1. PvRBP2b is a vaccine candidate based on the negative correlation between antibody titers against PvRBP2b recombinant proteins and parasitemia and risk of vivax malaria. The aim of this study was to analyze the genetic diversity of the PvRBP2b gene in the global P. vivax populations. METHODS: Near full-length PvRBP2b nucleotide sequences (190-8349 bp) were obtained from 88 P. vivax isolates collected from the China-Myanmar border (n = 44) and Thailand (n = 44). An additional 224 PvRBP2b sequences were retrieved from genome sequences from parasite populations worldwide. The genetic diversity, neutral selection, haplotype distribution and genetic differentiation of PvRBP2b were examined. RESULTS: The genetic diversity of PvRBP2b was distributed unevenly, with peak diversity found in the reticulocyte binding region in the N-terminus. Neutrality analysis suggested that this region is subjected to balancing selection or population bottlenecks. Several amino acid variants were found in all or nearly all P. vivax endemic regions. However, the critical residues responsible for reticulocyte binding were highly conserved. There was substantial population differentiation according to the geographical separation. The distribution of haplotypes in the reticulocyte binding region varied among regions; even the two major haplotypes Hap_6 and Hap_8 were found in only five populations. CONCLUSIONS: Our data show considerable genetic variations of PvRBPb in global parasite populations. The geographic divergence may pose a challenge to PvRBP2b-based vaccine development.


Subject(s)
Malaria, Vivax , Parasites , Animals , Antigens, Protozoan/genetics , Antigens, Protozoan/metabolism , Genetic Variation , Haplotypes , Malaria, Vivax/parasitology , Plasmodium vivax/genetics , Protozoan Proteins/metabolism , Reticulocytes , Selection, Genetic
15.
Parasitol Int ; 89: 102576, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35301119

ABSTRACT

Neosporosis is a parasitic disease affecting the health of dogs and cattle worldwide. It is caused by Neospora caninum, an obligate intracellular apicomplexan parasite. Dogs are its definitive host, it mostly infects livestock animals, especially cattle that acts as intermediate host. It is necessary to have well-established models of abortion and vertical transmission in experimental animals, in order to determine basic control measures for the N. caninum infection. We evaluated the role of N. caninum dense granule antigen 7 (NcGRA7) in the vertical transmission of N. caninum using the C57BL/6 pregnant mouse model. We inoculated mice on day 3.5 of pregnancy with parental Nc-1 or NcGRA7-deficient parasites (NcGRA7KO). Post-mortem analyses were performed on day 30 after birth and the surviving pups were kept until day 30 postpartum. The number of parasites in the brain tissues of offspring from NcGRA7KO-infected dams was significantly lower than that of the Nc-1-infected dams under two infection doses (1 × 106 and 1 × 105 tachyzoites/mouse). The vertical transmission rates in the NcGRA7KO-infected group were significantly lower than those of the Nc1-infected group. To understand the mechanism by which the lack of NcGRA7 decreases the vertical transmission, pregnant mice were sacrificed on day 13.5 of pregnancy (10 days after infection), although parasite DNA was detected in the placentas, no significant difference was found between the two parasite lines. Histopathological analysis revealed a greater inflammatory response in the placentas from NcGRA7KO-infected dams than in those from the parental strain. This finding correlates with upregulated chemokine mRNA expression for CCL2, CCL8, and CXCL9 in the placentas from the NcGRA7KO-infected mice. In conclusion, these results suggest that loss of NcGRA7 triggers an inflammatory response in the placenta, resulting in decreased vertical transmission of N. caninum.


Subject(s)
Antigens, Protozoan , Coccidiosis , Infectious Disease Transmission, Vertical , Neospora , Animals , Antigens, Protozoan/metabolism , Brain/parasitology , Chemokines/metabolism , Coccidiosis/transmission , Female , Infectious Disease Transmission, Vertical/veterinary , Mice , Mice, Inbred C57BL , Neospora/pathogenicity , Placenta/parasitology , Pregnancy
16.
Cell Mol Life Sci ; 79(2): 125, 2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35132495

ABSTRACT

Apicomplexan parasites, such as Plasmodium spp., rely on an unusual actomyosin motor, termed glideosome, for motility and host cell invasion. The actin filaments are maintained by a small set of essential regulators, which provide control over actin dynamics in the different stages of the parasite life cycle. Actin filament capping proteins (CPs) are indispensable heterodimeric regulators of actin dynamics. CPs have been extensively characterized in higher eukaryotes, but their role and functional mechanism in Apicomplexa remain enigmatic. Here, we present the first crystal structure of a homodimeric CP from the malaria parasite and compare the homo- and heterodimeric CP structures in detail. Despite retaining several characteristics of a canonical CP, the homodimeric Plasmodium berghei (Pb)CP exhibits crucial differences to the canonical heterodimers. Both homo- and heterodimeric PbCPs regulate actin dynamics in an atypical manner, facilitating rapid turnover of parasite actin, without affecting its critical concentration. Homo- and heterodimeric PbCPs show partially redundant activities, possibly to rescue actin filament capping in life cycle stages where the ß-subunit is downregulated. Our data suggest that the homodimeric PbCP also influences actin kinetics by recruiting lateral actin dimers. This unusual function could arise from the absence of a ß-subunit, as the asymmetric PbCP homodimer lacks structural elements essential for canonical barbed end interactions suggesting a novel CP binding mode. These findings will facilitate further studies aimed at elucidating the precise actin filament capping mechanism in Plasmodium.


Subject(s)
Actin Capping Proteins , Antigens, Protozoan , Malaria/parasitology , Plasmodium/metabolism , Protozoan Proteins , Actin Capping Proteins/chemistry , Actin Capping Proteins/metabolism , Antigens, Protozoan/chemistry , Antigens, Protozoan/metabolism , Kinetics , Models, Molecular , Protein Binding , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism
17.
Nat Commun ; 13(1): 933, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35177602

ABSTRACT

Understanding mechanisms of antibody synergy is important for vaccine design and antibody cocktail development. Examples of synergy between antibodies are well-documented, but the mechanisms underlying these relationships often remain poorly understood. The leading blood-stage malaria vaccine candidate, CyRPA, is essential for invasion of Plasmodium falciparum into human erythrocytes. Here we present a panel of anti-CyRPA monoclonal antibodies that strongly inhibit parasite growth in in vitro assays. Structural studies show that growth-inhibitory antibodies bind epitopes on a single face of CyRPA. We also show that pairs of non-competing inhibitory antibodies have strongly synergistic growth-inhibitory activity. These antibodies bind to neighbouring epitopes on CyRPA and form lateral, heterotypic interactions which slow antibody dissociation. We predict that such heterotypic interactions will be a feature of many immune responses. Immunogens which elicit such synergistic antibody mixtures could increase the potency of vaccine-elicited responses to provide robust and long-lived immunity against challenging disease targets.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Protozoan/immunology , Antigens, Protozoan/immunology , Malaria Vaccines/immunology , Malaria, Falciparum/prevention & control , Protozoan Proteins/immunology , Animals , Antibodies, Monoclonal/isolation & purification , Antibodies, Monoclonal/metabolism , Antibodies, Protozoan/isolation & purification , Antibodies, Protozoan/metabolism , Antigens, Protozoan/genetics , Antigens, Protozoan/isolation & purification , Antigens, Protozoan/metabolism , Cell Line , Drosophila melanogaster , Epitopes/immunology , Humans , Immunogenicity, Vaccine , Malaria Vaccines/therapeutic use , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Plasmodium falciparum/immunology , Protozoan Proteins/genetics , Protozoan Proteins/isolation & purification , Protozoan Proteins/metabolism , Vaccine Development
18.
Parasit Vectors ; 15(1): 38, 2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35073987

ABSTRACT

Apicomplexans are important pathogens that cause severe infections in humans and animals. The biology and pathogeneses of these parasites have shown that proteins are intrinsically modulated during developmental transitions, physiological processes and disease progression. Also, proteins are integral components of parasite structural elements and organelles. Among apicomplexan parasites, Eimeria species are an important disease aetiology for economically important animals wherein identification and characterisation of proteins have been long-winded. Nonetheless, this review seeks to give a comprehensive overview of constitutively expressed Eimeria proteins. These molecules are discussed across developmental stages, organelles and sub-cellular components vis-à-vis their biological functions. In addition, hindsight and suggestions are offered with intention to summarise the existing trend of eimerian protein characterisation and to provide a baseline for future studies.


Subject(s)
Antigens, Protozoan , Bodily Secretions , Eimeria , Animals , Antigens, Protozoan/genetics , Antigens, Protozoan/metabolism , Apicomplexa/genetics , Apicomplexa/metabolism , Bodily Secretions/metabolism , Bodily Secretions/parasitology , Chickens/parasitology , Coccidiosis/diagnosis , Coccidiosis/parasitology , Coccidiosis/veterinary , Eimeria/genetics , Eimeria/metabolism , Eimeria tenella/genetics , Eimeria tenella/metabolism , Genes, Protozoan , Host-Parasite Interactions , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Merozoites/metabolism , Oocysts/metabolism , Organelles/metabolism , Peptide Hydrolases/genetics , Peptide Hydrolases/metabolism , Poultry Diseases/diagnosis , Poultry Diseases/parasitology , Protein Transport , Sporozoites/metabolism
19.
Blood Adv ; 6(3): 931-945, 2022 02 08.
Article in English | MEDLINE | ID: mdl-34768285

ABSTRACT

Plasmodium falciparum-derived histidine-rich protein II (HRPII) has been shown to inhibit heparin-dependent anticoagulant activity of antithrombin (AT) and induce inflammation in vitro and in vivo. In a recent study, we showed that HRPII interacts with the AT-binding vascular glycosaminoglycans (GAGs) not only to disrupt the barrier-permeability function of endothelial cells but also to inhibit the antiinflammatory signaling function of AT. Here we investigated the mechanisms of the proinflammatory function of HRPII and the protective activity of AT in cellular and animal models. We found that AT competitively inhibits the GAG-dependent HRPII-mediated activation of NF-κB and expression of intercellular cell adhesion molecule 1 (ICAM1) in endothelial cells. Furthermore, AT inhibits HRPII-mediated histone H3 citrullination and neutrophil extracellular trap (NET) formation in HL60 cells and freshly isolated human neutrophils. In vivo, HRPII induced Mac1 expression on blood neutrophils, MPO release in plasma, neutrophil infiltration, and histone H3 citrullination in the lung tissues. HRPII also induced endothelial cell activation as measured by increased ICAM1 expression and elevated vascular permeability in the lungs. AT effectively inhibited HRPII-mediated neutrophil infiltration, NET formation, and endothelial cell activation in vivo. AT also inhibited HRPII-meditated deposition of platelets and fibrin(ogen) in the lungs and circulating level of von Willebrand factor in the plasma. We conclude that AT exerts protective effects against pathogenic effects of P falciparum-derived HRPII in both cellular and animal models.


Subject(s)
Antigens, Protozoan/metabolism , Histidine , Plasmodium falciparum , Protozoan Proteins/metabolism , Animals , Anticoagulants/pharmacology , Antithrombin III/metabolism , Antithrombin III/pharmacology , Antithrombins/pharmacology , Endothelial Cells/metabolism , Histidine/metabolism , Histidine/pharmacology , Histones/metabolism , Inflammation
20.
Electrophoresis ; 43(3): 509-515, 2022 02.
Article in English | MEDLINE | ID: mdl-34679212

ABSTRACT

Rhoptry neck protein 2 (RON2) binds to the hydrophobic groove of apical membrane antigen 1 (AMA1), an interaction essential for invasion of red blood cells (RBCs) by Plasmodium falciparum (Pf) parasites. Vaccination with AMA1 alone has been shown to be immunogenic, but unprotective even against homologous challenge in human trials. However, the AMA1-RON2L (L is referred to as the loop region of RON2 peptide) complex is a promising candidate, as preclinical studies with Freund's adjuvant have indicated complete protection against lethal challenge in mice and superior protection against virulent infection in Aotus monkeys. To prepare for clinical trials of the AMA1-RON2L complex, identity and integrity of the candidate vaccine must be assessed, and characterization methods must be carefully designed to not dissociate the delicate complex during evaluation. In this study, we developed a native Tris-glycine gel method to separate and identify the AMA1-RON2L complex, which was further identified and confirmed by Western blotting using anti-AMA1 monoclonal antibodies (mAbs 4G2 and 2C2) and anti-RON2L polyclonal Ab coupled with mass spectrometry. The formation of complex was also confirmed by Capillary Isoelectric Focusing (cIEF). A short-term (48 h and 72 h at 4°C) stability study of AMA1-RON2L complex was also performed. The results indicate that the complex was stable for 72 h at 4°C. Our research demonstrates that the native Tris-glycine gel separation/Western blotting coupled with mass spectrometry and cIEF can fully characterize the identity and integrity of the AMA1-RON2L complex and provide useful quality control data for the subsequent clinical trials.


Subject(s)
Antigens, Protozoan , Malaria Vaccines , Animals , Antigens, Protozoan/chemistry , Antigens, Protozoan/metabolism , Glycine , Isoelectric Focusing , Malaria Vaccines/chemistry , Membrane Proteins/chemistry , Mice , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...